Our climate system is undergoing some of the most dramatic changes to have occurred in recent earth history. Carbon dioxide concentrations have spiked at an unprecedented rate of increase since the Industrial Revolution, reaching levels higher than in at least 400, 000 years.ClimateChange

There is a wide consensus among climate scientists that global average temperature will rise considerably in response to this post-industrialization spike in greenhouse gases. Despite what is still not fully understood about the complex climate system, researchers now argue that the probability of temperature increases in the range of 2 to 7°C over the next century is relatively insensitive to the uncertainties about specific atmospheric processes (Roe and Baker, 2007).

Water and wastewater utilities are likely to be challenged by the effects of climate change in ways that go beyond the rising global temperatures and associated sea level rise. The physical models currently available predict vast and non-uniform changes in precipitation across the globe, with some regions getting wetter and others getting dryer. Model results also point to increases in the frequency of extreme climatic events such as floods and droughts. Meanwhile, familiar seasonal patterns of precipitation are already showing signs of shifts, with potentially dire consequences for water availability.

Water and wastewater infrastructure are vulnerable to these changes, with risks highest among utilities that are financially struggling, particularly in the developing world:

Indeed, water utilities in
 the developing world are still struggling with old and persistent problems of water management and sustainable delivery of services … the importance of forward-looking approaches to the climate challenge is greater for the institutionally and financially weak utilities.

Danilenko et. al (2010)

World Bank Water Working Note #24

Climate change and urban water utilities: challenges & opportunities

A recent World Bank analysis of the climate change threats faced by water utilities points out that service providers in wealthier nations “are now beginning to identify strategic policy directions based on monitoring, analysis and the global circulation models (GCM) of possible climate change scenarios” (Danilenko et al, 2010).

At the same time, planning for these changes is extraordinarily complex. The US Environmental Protection Agency (EPA)’s National Drinking Water Advisory Council recognized in a 2011 report that American “water sector utilities are overwhelmed with climate change information and lack of coordination by federal agencies, state agencies, and other water sector actors…[and] water utility officials are struggling with the number and volume of climate change studies being produced by many different federal and state agencies, water associations, universities, and other organizations.” EPA’s Climate Ready Water Utilities initiative now administers an online toolbox that provides extensive resources, ranging from publications and reports to tools and models and even funding opportunities.

Though climate change is happening at global scale, its effects will manifest themselves locally. An essential part of planning for the challenges of global warming is assessment of the vulnerability of individual utilities, which is in turn a function of both specific local and regional risks and the institutional capacity to operate effectively in the face of climate uncertainty. Vulnerability assessment requires, among other tasks, long-term data collection.

Aquaya’s work to improve data collection and management by water utilities is intended to improve operational performance, but an important additional benefit will be to help utilities adapt to regional changes in climate. The more that utilities understand and optimize their current operations, the more prepared they will be to adjust to changes in water availability, quality, and demand that a changing climate will bring.

Low-cost, high efficacy water treatment innovations such as filters and chemical disinfectants have been promoted in developing country contexts for at least a decade, with proponents ranging from small community-based organizations to some of the world’s largest consumer product manufacturers. Published health trials have provided compelling evidence that these innovations can reduce disease when they are adopted by the populations for whom they were designed.

Unfortunately, the targeted populations – low-income strata who are the least likely to be served by municipal water utilities and the most vulnerable to waterborne illness – often prove to be very difficult customers. Getting these populations to consistently use home filters and disinfectants – let alone purchase them with their own money – has proven to be a mighty challenge.

Aquaya recognized early on that the health benefits identified in early health trials of ceramic filters and chlorine disinfectants could only be realized on a grand scale when the proponents of these new technologies had a full understanding of consumer preferences and behavior vis-à-vis household water treatment products. Together with colleagues at UC Berkeley, we initiated a research program in western Kenya to better understand what influences end-user adoption of these technologies. The results of our first study was recognized as one of the top papers of 2010 by Environmental Science and Technology, and in May 2012 the journal published some results from a follow-on study we conducted with colleagues from the renowned International Centre for Diarrheal Disease Research – Bangladesh (ICCDR, B). “Learning to Dislike Safe Water Products: Results from a Randomized Controlled Trial of the Effects of Direct and Peer Experience on Willingness to Pay” (Vol. 46, pp.6244-6251) provides a sobering picture of the challenge of achieving widespread uptake of home water treatment products.

In a study of 800 households in the large informal settlement of Mirpur in Dhaka, Bangladesh, we examined how direct and peer experience with multiple household water treatment products influenced consumer demand. Contrary to expectation, we observed that neither direct experience with these products and the experience of neighbors elevated willingness-to-pay. Instead, those households which received two-month free trials of three different products were less willing to pay for these products than control households which received no such trials.

While we caution that these results are not necessarily generalizable to other geographic settings, urban informal settlements in South Asia do live with a large fraction of the global burden of diarrhea. That experience with home water treatment products appeared to make consumers less likely to purchase these products forces a serious re-thinking of how to bring safe water to these populations, including a consideration of other delivery options (whether via expansion of municipal water services or neighborhood-level water treatment and vending operations.

Aquaya has studied and optimized water quality testing strategies in low-resource settings for over 10 years. We are happy to provide insights to help your organization develop or improve a monitoring program. Please reach out by contacting us.

Connect With Us